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We consider the two classes of exothermic chemical wave fronts, propagating toward a stable or an unstable
steady state. The hydrodynamic equations for stream velocity, temperature, and concentrations are solved
numerically for increasing values of the reaction heat. For a critical value of the heat release, we find a
transition between a chemical front, whose speed depends on the chemical dynamics, and a generic flame,
whose speed is entirely determined by heat release. We derive an analytical expression of the flame speed from
the invariants of the hydrodynamic equations. This result substantiates macroscopic approaches widely used in
combustion, in which the chemical models include only simplified reaction mechanisms.
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I. INTRODUCTION

Chemical wave fronts are concentration waves that propa-
gate without deformation and replace a steady state by an-
other one. While flame propagation is a basic issue of com-
bustion �1–3�, reaction-diffusion fronts are intensively
studied in the context of chemical �4–7� and biological �8�
systems. There is increasing experimental evidence to sug-
gest that the early stages of many eukaryotic organisms are
regulated by the propagation of a chemical wave �9,10�. The
so-called clock and wave-front model is now well admitted
for vertebrate morphogenesis �11,12�. Heat-inducible misex-
pression during fish embryogenesis has been recently exhib-
ited �10�. In this paper, we revisit the problem of front propa-
gation speed selection in the case of exothermic reactions. To
make the link between combustion and reaction-diffusion
processes, we study how the propagation speed of an exo-
thermic front varies with increasing heat release. Our goal is
to determine if exothermicity induces a small perturbation or
if it qualitatively changes the properties of the traveling
front. To check the universality of the phenomenon, we con-
sider the two kinds of reaction-diffusion fronts, propagating
either toward an unstable steady state or between two stable
steady states. The Fisher �13� and Kolmogorov-Petrovsky-
Piskunov model �14�,

A + B→
k

2A + heat Q �1�

introduced for Q=0 to describe the propagation of an advan-
tageous gene into a population, serves as the reference model
of autocatalytic reactions with a quadratic dynamics. It is
used to analyze the isothermal reaction fronts that replace an
unstable steady state a0 by a stable steady state ast. The
modified Schlögl model �15,16�, which is associated with a
cubic dynamics,

2A + B→
k1

3A + heat Q , �2�

A→
k2

B − heat Q , �3�

is a minimal model exhibiting, for Q=0, two stable steady
states, �ast, a0�, for appropriate rate constants k1 and k2. For
these simple, generic models, the analytical expression of the
front propagation speeds is known in the case of isothermal
reactions and the results of the macroscopic reaction-
diffusion equations have been confirmed by simulations at
the microscopic level �7,16–19�. We recently studied exo-
thermic Fisher fronts in the frame of a macroscopic descrip-
tion �20� and solved numerically the hydrodynamic equa-
tions for increasing values of the activation energy of the
reaction. We proved the existence of a forbidden propagation
speed interval, where the system does not admit steady trav-
eling solutions. Qualitatively, the reactive interface can be
seen as a traveling heat source, generating forward and back-
ward heat fronts. In the forbidden domain, the forward heat
front would propagate at a speed close to that of the reaction
interface, so that the distance between these two interfaces
would always remain constant. In these conditions, the heat
released by the reaction accumulates in the vicinity of the
reactive interface and this sustained thermal perturbation pre-
vents reaching steady traveling interfaces.

The paper is organized as follows. In Sec. II, we write the
hydrodynamic equations associated with the Fisher model
and the Schlögl model. We use the expressions of the trans-
port coefficients which are valid for a dilute gas, in order to
make possible a comparison with microscopic simulations.
The results of the numerical integration of these equations
are given in Sec. III. A qualitatively different behavior is
found as the heat release exceeds a critical threshold. After
the transition, we show that the flame has a universal behav-
ior, in the sense where its speed does not depend on the
chemical model and on the activation energies. The propaga-
tion speeds of the exothermic chemical fronts deduced from
the numerical solutions are compared with analytical predic-
tions. We propose in the Conclusion an experimental system
that could be used to validate the theoretical results.
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II. THE BALANCE EQUATIONS OF THE
THERMOCHEMICAL SYSTEM

For each model of exothermic chemical fronts, the dy-
namics is governed by the following balance equations �27�
for total concentration ��x , t�, stream velocity u�x , t�, tem-
perature T�x , t�, and concentration a�x , t� of species A:

�t� = − �x��u� , �4�

�tu = −
1

m�
�x�kB�T −

4

3
�0

�T�xu� − u�xu , �5�

�tT =
T

3
�xu +

8�0
�T

9kB�
��xu�2 − �x�uT� +

f0

kB�
�x��T�xT� +

2QR

3kB�
,

�6�

�ta = − �x�au� + d0�x��T�x�a/��� + R , �7�

where the fluid is assumed to obey the ideal-gas law and
where the reactive term R is given by RF=ka��−a� for the
Fisher model and by RS=k1a2��−a�−k2a for the Schlögl
model. In the absence of reaction, the reactive term vanishes
and Eqs. �4�–�6� reduce to the Navier-Stokes equations for a
dilute inert gas �28�, i.e., to the conservation equations for
mass, momentum, and energy. The macroscopic description
can be readily extended to any fluid, but we apply it to a
dilute gas to make possible a comparison with microscopic
simulations based on the direct simulation Monte Carlo
method �21�, which is valid for low-density gases �22,23�.
The extension to solid flame is not straightforward. The
mechanisms governing self-propagating high-temperature
synthesis �SHS� �24� have the complexity of multiphase re-
actions, such as dissolution-precipitation and heterogeneous
nucleation processes that are not included in this description.
Moreover, solid combustion should take into account the ex-
istence of stresses induced by the exothermic processes.

The reservoirs of species C of the original Schlögl model
�15�, C+2A�3A, A�C, are difficult to simulate at the mi-
croscopic level. Previously �16�, we introduced the modified
model given in Eqs. �2� and �3� in order to avoid resorting to
tanks. The choice of a molecular model and an interaction
potential makes it possible to use explicit expressions for the
transport coefficients. For the hard-sphere model �21,29�, the

heat conductivity reads f0
�T=

25kB

32�
��kBT

m for particles of cross
section � and mass m, the diffusion coefficient is d

=d0
�T /� with d0= 3

8�
��kB

m , and the shear viscosity is �0
�T

= 5
12�

��kBTm. According to kinetic theory for reactive hard
spheres �21�, the rate constant of the Fisher model is k

=4�� kBT

�m exp�−
Ea

kBT �, where Ea is the activation energy of the
autocatalytic reaction. The introduction of processes with si-
multaneous interaction of three particles poses a problem in
the hard-sphere model. To mimic three-body collisions, we
use a solution introduced in microscopic simulations of the
Brusselator model �25�, which we already adapted to the
modified Schlögl model �16�: a three-molecular collision is
seen as a binary collision with a third molecule in the nearest
neighborhood of the colliding pair. The rate constant k1

=k /� of the ternary collisions �A, A, B� is deduced from the
expression that is obtained for binary collisions �A, B� that is
corrected by the concentration of species A.

We consider the stationary reaction fronts, a�x , t�=a�x
−Ut�, moving at speed U in the positive direction of the x
axis. The invariants deduced from Eqs. �4�–�7� lead to Hugo-
niot relations �26,27� between the values of the hydrody-
namic variables ahead of �index 1� and behind �index 2� the
front �20�,

�2�u2 − U� = �1�u1 − U� , �8�

kB�2T2 + m�2�u2 − U�2 = kB�1T1 + m�1�u1 − U�2, �9�

5

2
kBT2 +

m

2
�u2 − U�2 =

5

2
kBT1 +

m

2
�u1 − U�2 + Q . �10�

The step �u2−u1� of stream velocity obeys a second-order
polynomial equation that does not admit real roots if U
� �U− ,U+�, where

U� = u1 +�15T1kB + 16Q � 4�2Q�15T1kB + 8Q�
9m

.

�11�

For both models, we start from a uniform condition for
total concentration �0, stream velocity u0=0, temperature T0,
and from a step function for the concentration of species A
with a�x , t�=ast for x�0 and a�x , t�=a0 for x�0, where ast
and a0 are steady states for Q=0. The reaction fronts of these
two models propagate toward a0=0, in which the reactions
are stopped due to the lack of species A. A microscopic ap-
proach requires that a0 is not sensitive to fluctuations of con-
centrations that would induce spontaneous transitions toward
ast before the passage of the front. For the Schlögl model, the
irreversibility of the second reaction ensures the existence of
a0=0. In the Fisher model, one has ast=�0, and in the

Schlögl model, ast=
�0

2 �1+�1−
4k2

k1�0
2 � for parameters such that

the square root is defined and where k1 is evaluated in iso-
thermal conditions.

We solve numerically Eqs. �4�–�7� using the Euler method
�20�. Due to the propagation of the reactive interface a�x
−Ut� and to the forward and backward heat fronts, we must
increase the length L of the medium during the computation.
We continuously check the values of the hydrodynamic vari-
ables �, u, and T in cells 50 and L−50. As soon as the value
of one of these variables differs, at the computing precision,
from the initial value �0, u0, or T0, we extend the system by
one cell at the corresponding boundary. Hence, we keep an
unperturbed boundary layer of 50 cells at each extremity of
the medium during the whole computation. We choose initial
temperature kBT0=1, particle mass m=1, time step �t
=10−2, spatial discretization into cells of length �L=1 unless
otherwise stated, cross section �F=0.0794 and initial total
concentration �0F=20 for the Fisher model, �S=0.001, �0S
=40, and rate constant k2=0.001 for the Schlögl model.

DUMAZER et al. PHYSICAL REVIEW E 78, 016309 �2008�

016309-2



III. RESULTS

In the isothermal case Q=0, the hydrodynamic variables
are constant. The speed U of the reaction front is obtained
from solutions of the reaction-diffusion equation given in Eq.
�7� for u=0, �=�0, T=T0. For the Fisher model �7�, one has
UF=2�k�0d. Depending on the activation energy Ea, the
speed UF can be larger �small Ea� or smaller �large Ea� than

the sound speed Usound=�5kBT0

3m at temperature T0. For the
isothermal Schlögl model �16�, the speed is given by US

=
�0

2
� k1d

2 �3�1−
4k2

k1�0
2 −1�. The largest value, 1

2
�3kBT0

m , obtained
for �Ea→0, k2→0�, is smaller than the sound speed.

For small values of heat release Q, two qualitatively dif-
ferent behaviors are observed for the Fisher model and only
one for the Schlögl model.

Figure 1�a� gives the results of the numerical integration
of Eqs. �4�–�7� for the Fisher model. It represents the profiles
for scaled concentration a /�, temperature deviation �T−T0�,
and stream velocity u for a small value of the activation
energy. In this case, the reactive front is the first step encoun-
tered from the right boundary. The second step and the fourth
step are the forward and backward heat fronts, propagating,
respectively, to the right and to the left. The third interface
close to x=0 is reminiscent of the initial condition. We give
in Fig. 1�b� a diagram that represents stream velocity u ver-
sus 1 /�. According to mass conservation, already used to
derive the first Hugoniot relation given in Eq. �8�, we have
u=−�0U /�+U. The relation applies for any kind of station-
ary waves traveling at speed U. The straight lines observed

in Fig. 1�b� prove that the four interfaces are stationary trav-
eling fronts. The y intercept gives the propagation speed. The
straight line with the largest �in absolute value� negative
slope is associated with the fastest front, here the reaction
front. The other line with a negative slope corresponds to the
forward heat front, propagating slower than the reactive
front, at a speed close to the sound speed. The nearly hori-
zontal line is related to the reminiscence of the initial condi-
tion; it moves very slowly to the left. Finally, the segment
with a positive slope is associated with the backward heat
front. Such a behavior, where the reaction front propagates
faster than the forward heat front, cannot be observed in the
case of the Schlögl model.

For a larger activation energy and still a small heat re-
lease, another type of behavior is obtained for both models,
as given in Fig. 2. Now, the first interface from the right is
the forward heat front. It propagates faster than the reaction
front. The four interfaces are stationary wave fronts, as
shown by the straight lines in the �1 /� ,u� diagram given
Figs. 2�b� and 2�d�.

For each model, we performed series of calculations for
several fixed values of activation energy Ea and variable heat
release Q. Figure 3 shows how the propagation speed U of
the reaction front varies with Q. The solid lines represent the
two critical speeds, U− and U+, which limit the forbidden
domain of propagation speed �20�. They have been deduced
from Eq. �11� in which the temperature T1 and the stream
velocity u1 ahead of the reaction front are assumed to be
unperturbed, i.e., T1=T0 and u1=0. The dashed line corre-
sponds to the sound speed at temperature T0.

For the Fisher model and the first series at a small activa-
tion energy Ea=0.8, the reaction front is the fastest interface
that propagates toward the unperturbed medium at T0. The
profiles given in Fig. 1 illustrate this case. The speed of
pulled fronts �30�, propagating toward an unstable state such

FIG. 1. Fisher model: Numerical solution of Eqs. �4�–�7� for
activation energy Ea=1 and heat release Q=0.01 after 5	106 inte-
gration time steps. �a� Left axis: scaled concentration profile a /� of
species A �solid line�. Right axis: temperature shift T−T0 �dashed
line� and stream velocity u �dotted line�. �b� Stream velocity u vs
reciprocal of total concentration 1 /�.

FIG. 2. �a� and �b� Same caption as Fig. 1 for the Fisher model
with Ea=1.65 and Q=0.01. �c� and �d� Same caption as Fig. 1 for
the Schlögl model with Ea=0.1 and Q=0.01 after 9	106 integra-
tion time steps.
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as Fisher front, is determined by the leading edge. As shown
in Fig. 3�a�, the speeds U that are greater than U+ are given
by the unperturbed expression U=2�k�0d, as in the isother-
mal case. The open circles, associated with a small value of
activation energy Ea, are on a horizontal line for sufficiently
small values of heat release Q. For a critical heat release, this
horizontal line intersects the upper branch U+. As Q is in-
creased further, the reaction front speed follows the upper
branch U+.

For the Fisher model and the second series at a higher
activation energy Ea=1.65 and still small heat releases, the
reaction front is preceded by the heat front. Figure 2 gives a
typical example of this behavior. The leading edge of the
reaction front is therefore perturbed by the temperature in-
crease behind the heat front and the propagation speed U of
the reaction front is slightly larger than in the isothermal
case. As shown in Fig. 3�a�, the solid squares are on a slowly
increasing curve until this curve slightly exceeds the lower
branch U−. Then, an abrupt transition is observed as Q in-
creases and the speed remains attached to the upper branch
U+, exactly as in the previous series at Ea=0.8. The critical
value of Q at which the transition occurs depends on activa-
tion energy Ea. After the transition, the propagation speed,
fixed at U+, is determined by Q only. It does not depend on
the activation energy.

For the Schlögl model, the reaction front is always behind
the forward heat front and the reaction front speed is per-
turbed with respect to the isothermal case. As seen in Fig.
3�b�, the transition is smoother than for the Fisher model and

occurs after the lower branch, U−, has been crossed. A larger
temperature increase, ahead of the reactive interface, is nec-
essary to destabilize a pushed reaction front, whose speed
depends on the entire profile and not only on the leading
edge �16�.

The main result is that, after the transition, the propaga-
tion speed at a given Q corresponds to the value of U+ for
this heat release, for the Schlögl model as well as for the
Fisher model. The propagation speed is then entirely deter-
mined by Q and does not depend on the specific nonlineari-
ties of the chemical model. The same property applies to the
profiles of the hydrodynamic variables, as seen in Figs. 4�a�
and 4�c�. According to Figs. 4�b� and 4�d�, only three seg-
ments of the �1 /� ,u� diagram are straight lines: only three
stationary traveling fronts are observed and the forward heat
front is replaced by a continuously stretching interface be-
hind the reaction front. The speed U+ on the critical upper
branch can be calculated exactly from the analytical expres-
sion given in Eq. �11�, since the relations T1=T0 and u1=0
are rigorously satisfied on this branch.

IV. CONCLUSION

We have performed a hydrodynamic description of a re-
active flow that possesses an exothermic traveling front. For
the sake of generality, we consider two minimal chemical
models, which cover the description of the two types of
chemical wave fronts, that travel either toward a stable sta-
tionary state or an unstable one. For a sufficiently small heat
release Q, an exothermic reaction wave front is either faster
or slower than the forward heat front. For such small heat
releases, the propagation speed of the reaction front and the
profiles of the hydrodynamic variables depend on the chemi-

FIG. 3. Critical reaction front speeds U− and U+ given in Eq.
�11� vs log10�Q� �solid lines�, sound speed at T0 �dashed line�, and
heat front speed propagating to the right �solid triangles�. �a� Fisher
model: reaction front speed given by the numerical solutions of
Eqs. �4�–�7� for Ea=0.8 �open circles� and Ea=1.65 �solid squares�.
�b� Schlögl model: reaction front speed for Ea=0.1 �solid squares�.

FIG. 4. �a� and �b� Same caption as Fig. 2 for the Fisher model
with Ea=1 and Q=1 after 5	106 integration time steps. �c� and �d�
Same caption as Fig. 2 for the Schlögl model with Ea=0.1 and Q
=1 after 18	106 integration time steps and a cell length �L=6.
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cal model and on the activation energy. We have shown that
a transition occurs for a value of heat release that depends on
the model and on the dynamical parameters. After the tran-
sition, we observe a generic flame, independent of the chemi-
cal model and of its parameters, whose properties are entirely
determined by heat release Q. These results rely on the ex-
istence of a forbidden interval for stationary front speed,
which has been derived on the basis of the hydrodynamic
invariants. We give an analytical expression for the two
branches, U− and U+, which limit the domain of forbidden
speeds for stationary fronts. Qualitatively, the forbidden do-
main corresponds to parameters for which the heat front and
the reaction interface propagate at the same speed, so that
heat accumulates at the level of the reaction interface and
destabilizes it. The transition between a model-dependent
front and a generic flame occurs when the propagation speed
of the reaction front reaches one of the boundaries of the
forbidden domain. After the transition, the system selects the
marginally stable solution associated with the smallest per-
mitted propagation speed, compatible with an increase with
Q, i.e., the critical upper branch U+ of the forbidden domain.

These results give credit to macroscopic approaches
widely used in combustion �31,32� in which the chemical
models include only very simplified reaction mechanisms.
We show that, when the heat release is sufficiently large, the
nonlinearities induced by the specific concentration depen-
dence of the chemical model and even the value of the acti-
vation energies do not influence the flame properties.

We have solved the hydrodynamic equations in the case
of a dilute gas in order to be able to compare the macro-
scopic predictions with microscopic simulations of particle
dynamics. We intend to use the direct simulation Monte
Carlo method, which was already implemented for reactive

flows and that requires the dilute gas assumption. The invari-
ants and consequently the two branches, U− and U+, do not
involve any transport coefficient or chemical rate constant.
Their expression only uses the usual ideal-gas assumption,
which neglects particle interaction contribution to energy and
pressure. Therefore, we can expect that the existence of a
transition and the value of the flame speed after the transition
are not related to any specific property of the systems we
considered. The rather generic character of our results sug-
gests that they remain valid for any fluid.

The skeletal isomerization of butene over well-chosen
pore size zeolites �33� could be a good candidate for an ex-
perimental validation. For medium pore size zeolites, the
transformation of n-butene into isobutene is known to follow
a bimolecular, autocatalytic mechanism, and a wave front of
Fisher type could be observed in a long cylindrical reactor
prepared with n-butene and isobutene at equilibrium on the
left and isobutene on the right. A wave front of Schlögl type
can be envisaged for larger pore size zeolites, which favor
trimolecular reactions. The heat release can be varied by us-
ing derivatives of butene resulting from the substitution of a
hydrogen by different functional groups. According to our
results, possible changes of mechanism and activation energy
should not affect the flame speed after the transition. The
experimental determination of the flame propagation speed
for different derivatives could be used to check if the mar-
ginally stable speed associated with the upper branch of the
forbidden domain is actually selected.
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